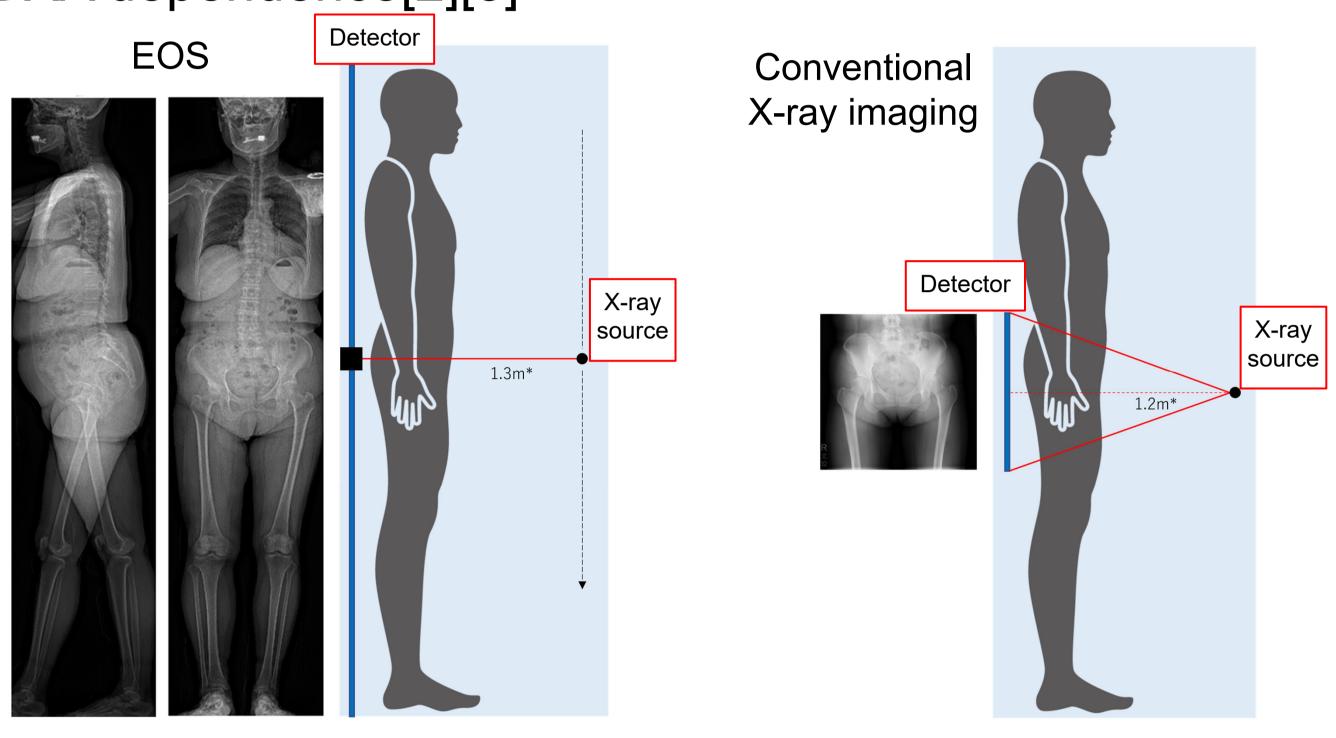
Estimating Bone Mineral Density and Muscle Mass from EOS Low Dose X-ray Imaging System

Kazuki Suehara¹, Yi Gu¹, Yoshito Otake¹, Keisuke Uemura², Masashi Okamoto^{3,4}, Kunihiko Tokunaga⁴, Hugues Talbot⁵, and Yoshinobu Sato¹

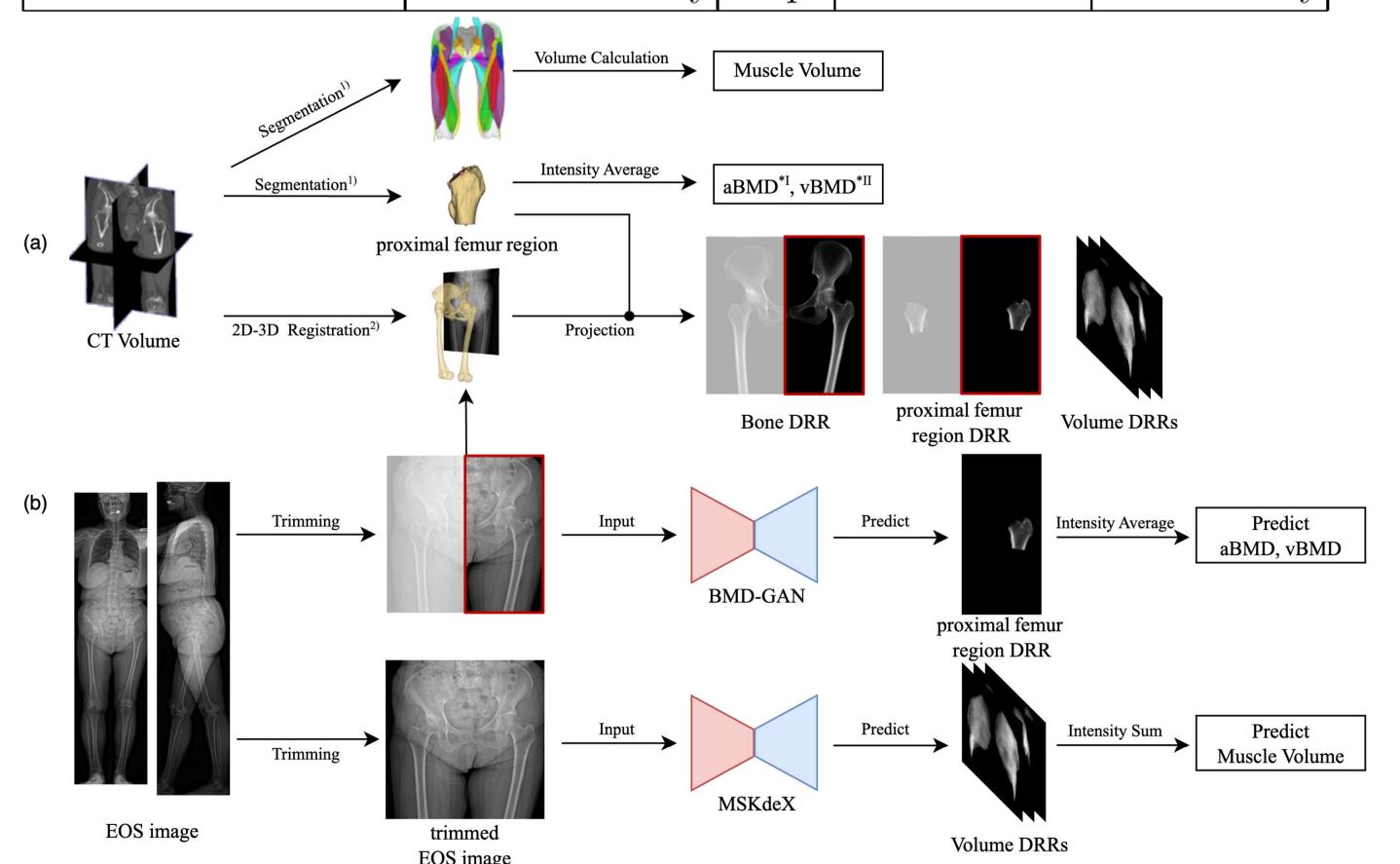


Saclay France

- 1 Nara Institute of Science and Technology, 2 Osaka University
- 3 Kameda Daiichi Hospital, 4 Niigata University, 5 CentraleSupélec, Université Paris-Saclay, France

Introduction

- Low-dose EOS imaging enables full-body, biplanar X-rays for precise skeletal alignment and implant positioning in THA patients^[1]
- Osteoporosis and sarcopenia risk quality of life, requiring early detection of bone mineral density and muscle mass
- Deep learning offers cost-effective BMD and muscle mass estimation from plain radiographs, reducing CT and DXA dependence[2][3]



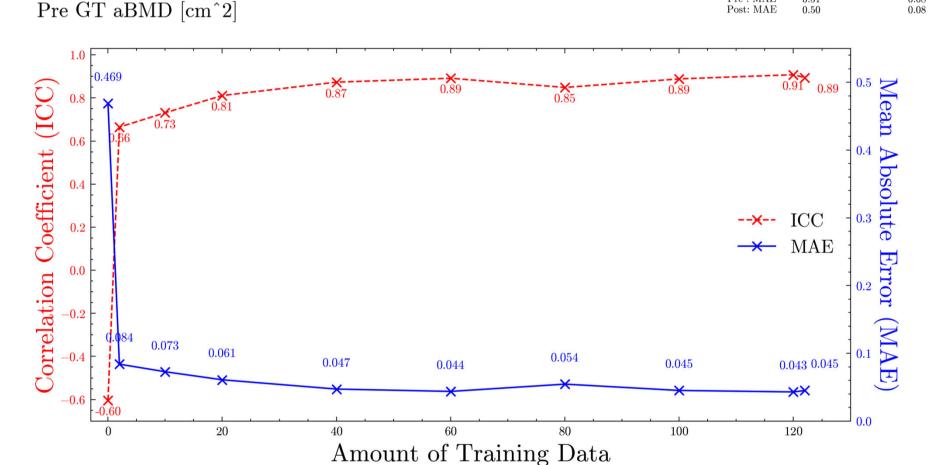
Methods

- Dataset included 600 CT and X-ray images for pretraining and 77 EOS—CT pairs for fine-tuning evaluation
- Ground truth BMD and muscle mass derived from CT using segmentation, 2D–3D registration, and DRR generation
- EOS images processed with BMD-GAN^[2] and MSKdeX^[3] models, fine-tuned to predict bone density and muscle volume

Details of the dataset used in this study

Dotaile of the databet does in the otalay											
Acquired institution	Institution	1	Institution 2								
Purpose	pre-training	r >	fine-tuning and testing								
Modality	CT	X-ray	CT	EOS							
Data dimension	3D	2D	3D	2D							
# of patients	600	600	77	77							
# of images	600	2461^a	77	77							
Field of view	ield of view Lower extremity		Pevis to knee	Whole body							

Overview of Bone Density and Muscle Volume Estimation


Results

- Fine-tuned model achieved the highest BMD prediction accuracy (PCC 0.916, ICC 0.894), surpassing pre-trained and scratch models
- Muscle mass estimation improved significantly with finetuning, especially for the iliopsoas muscle, showing higher ICC consistency
- Reliable pre-/postoperative BMD predictions with minimal error; performance stable even with only 40 paired EOS–CT images

BMD estimated [7] from pre- and post-operative CT and EOS images.

Impact of training data size on prediction accuracy

BMD and Muscle Mass Estimation Results

Model type	BMD	Muscle mass estimation						
Model type	estimation	Glu. max	Glu. med.	Glu. min.	Iliacus	Obt. ext.		
PCC								
Train	0.791	0.705	0.753	0.63	0.792	0.701		
Pre-trained	0.874	0.821	0.839	0.692	0.823	0.766		
Linear calibration	0.869	0.798	0.832	0.670	0.805	0.740		
Fine-tuning	0.916	0.795	0.840	0.746	0.843	0.798		
ICC								
Train	0.710	0.483	0.655	0.596	0.721	0.647		
Pre-trained	-0.604	0.344	0.568	0.579	-0.218	0.698		
Linear calibration	0.861	0.784	0.821	0.629	0.795	0.719		
Fine-tuning	0.894	0.631	0.772	0.729	0.763	0.762		

Discussion

- Transfer learning from X-ray to EOS enables robust BMD and muscle mass estimation using limited training data
- Method maintains accuracy pre- and post-operatively, demonstrating feasibility for frequent low-dose monitoring in THA patients
- Future work includes multi-institutional data, domain adaptation, and longitudinal tracking to enhance generalizability and clinical impact

References

- [1] Brage, K., Mussmann, B., Geijer, M., Larsen, P., Jensen, J.: Clinical application of EOS imaging system: a scoping review protocol. JBI evidence synthesis 21(5), 1009–1015 (2023).
- [2] Gu, Y., Otake, Y., Uemura, K., Soufi, M., Takao, M., Talbot, H., Okada, S., Sugano, N., Sato, Y.: Bone mineral density estimation from a plain x-ray image by learning decomposition into projections of bone-segmented computed tomography. Medical Image Analysis 90, 102970 (2023).
- [3] Gu, Y., Otake, Y., Uemura, K., Takao, M., Soufi, M., Hiasa, Y., Talbot, H., Okada, S., Sugano, N., Sato, Y.: MSKdeX: musculoskeletal (MSK) decomposition from an X-ray image for fine-grained estimation of lean muscle mass and muscle volume. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 497–507. Springer (2023).

