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Introduction
 Dual-energy x-ray absorptiometry (DXA) is considered the goad standard for bone 

mineral density (BMD) estimation.

 Recent research focus on BMD estimation from X-ray images for opportunistic screening.

 Our Contributions:

1. A method to estimate BMD from an x-ray image by decomposition using 
quantitative CT (QCT) under limited datasets.

2. Comparison of  performance of different backbones.

Proposed Method: Digital Decomposition for BMD 
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 Backbone comparison and HL for decomposition accuracy on a limited dataset.

 BMD Estimation accuracy with five-fold cross-validation on a 1206-samples dataset.
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 The learned representation visualized by T-SNE.

Conclusion
 We proposed a decomposition method, BMD-GAN, for BMD estimation from an x-

ray image utilizing CT.

 We compared the performance of Backbones, where HRFormer with the proposed 
HL showed best performance.

 Our method significantly outperformed the conventional method that uses multi-step 
inference and direct regression training.

 Further adding regression head to utilized the learned representation boosted the 
performance of BMD-GAN, especially for QCT-BMD estimation.

 Future works include incorporating phantom-free CT for accessing larger datasets, 
and contrastive learning for accuracy improvement.

{gu.yi.gu4,otake}@is.naist.jp
Code is available at https://github.com/NAIST-ICB/BMD-GAN
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 Multi-institutional validation of proposed method (with regression head).

 Model attention analysis using FullGrad [7].

A representative case

Focused on target region for accurate estimation

Cannot find reasonable region leading to poor performance

Visualizing T-SNE of x-ray images, representations by the encoder with random initialization; the 
encoder of direct regression training; and the encoder of the proposed BMD-GAN w/ regression 
head, respectively.
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 Conventional methods [3,4] for BMD estimation from an x-ray image.

Disadvantages:
• Tissues remain entangled.
• Lacking efficiency.
• Independent model Training.
• Requiring large-scale dataset.
• Medical data is not fully utilized.

Disadvantages:
• Tissues remain entangled.
• Lacking efficiency.
• Independent model Training.
• Requiring large-scale dataset.
• Medical data is not fully utilized.
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BMD Estimation from x-ray images is highly anticipated
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